Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.550
Filtrar
1.
Cancer Rep (Hoboken) ; 7(4): e2075, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662379

RESUMO

INTRODUCTION: Gemcitabine (GEM) is often used to treat pancreatic cancer. Many anti-cancer drugs induce cancer cell death, but some cells survive after cell cycle arrest. Such a response to DNA damage is termed cellular senescence. Certain drugs, including the Bcl-2-family inhibitor ABT-263, kill senescent cells; this is termed senolysis. In this study, we examined the therapeutic benefits of ABT-263 in GEM-induced senescence of human pancreatic cancer cells. METHODS AND RESULTS: Of four pancreatic cancer cell lines (PANC-1, AsPC-1, CFPAC-1, and PANC10.05), GEM induced senescent features in PANC-1 and AsPC-1 cells, including increases in the cell sizes and expression levels of mRNAs encoding interleukin (IL)-6/IL-8 and induction of ß-galactosidase. Successive treatment with GEM and ABT-263 triggered apoptosis in PANC-1 and AsPC-1 cells and suppressed colony formation significantly. Senolysis of GEM-induced senescent pancreatic cancer cells by ABT-263 was triggered by a Bcl-xL inhibitor, but not by a Bcl-2 inhibitor, suggesting a central role for Bcl-xL in senolysis. In a xenograft mouse model, combined treatment with GEM and ABT-737 (an ABT-263 analog exhibiting the same specificity) suppressed in vivo growth of AsPC-1 significantly. CONCLUSION: Together, our results indicate that sequential treatment with GEM and senolytic drugs effectively kill human pancreatic cancer cells.


Assuntos
Compostos de Anilina , Apoptose , Senescência Celular , Desoxicitidina , Gencitabina , Neoplasias Pancreáticas , Sulfonamidas , Ensaios Antitumorais Modelo de Xenoenxerto , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Senescência Celular/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Camundongos , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Camundongos Nus , Proliferação de Células/efeitos dos fármacos , Senoterapia/farmacologia
2.
PLoS One ; 19(4): e0298808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598488

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) presents at advanced stages and is refractory to most treatment modalities. Wnt signaling activation plays a critical role in proliferation and chemotherapeutic resistance. Minimal media conditions, growth factor dependency, and Wnt dependency were determined via Wnt inhibition for seven patient derived organoids (PDOs) derived from pancreatic tumor organoid libraries (PTOL). Organoids demonstrating response in vitro were assessed in vivo using patient-derived xenografts. Wnt (in)dependent gene signatures were identified for each organoid. Panc269 demonstrated a trend of reduced organoid growth when treated with ETC-159 in combination with paclitaxel or gemcitabine as compared with chemotherapy or ETC-159 alone. Panc320 demonstrated a more pronounced anti-proliferative effect in the combination of ETC-159 and paclitaxel but not with gemcitabine. Panc269 and Panc320 were implanted into nude mice and treated with ETC-159, paclitaxel, and gemcitabine as single agents and in combination. The combination of ETC-159 and paclitaxel demonstrated an anti-tumor effect greater than ETC-159 alone. Extent of combinatory treatment effect were observed to a lesser extent in the Panc320 xenograft. Wnt (in)dependent gene signatures of Panc269 and 320 were consistent with the phenotypes displayed. Gene expression of several key Wnt genes assessed via RT-PCR demonstrated notable fold change following treatment in vivo. Each pancreatic organoid demonstrated varied niche factor dependencies, providing an avenue for targeted therapy, supported through growth analysis following combinatory treatment of Wnt inhibitor and standard chemotherapy in vitro. The clinical utilization of this combinatory treatment modality in pancreatic cancer PDOs has thus far been supported in our patient-derived xenograft models treated with Wnt inhibitor plus paclitaxel or gemcitabine. Gene expression analysis suggests there are key Wnt genes that contribute to the Wnt (in)dependent phenotypes of pancreatic tumors, providing plausible mechanistic explanation for Wnt (in)dependency and susceptibility or resistance to treatment on the genotypic level.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Humanos , Gencitabina , Via de Sinalização Wnt , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Camundongos Nus , Proliferação de Células , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Organoides/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473827

RESUMO

Alternatively spliced tissue factor (asTF) promotes the progression of pancreatic ductal adenocarcinoma (PDAC) by activating ß1-integrins on PDAC cell surfaces. hRabMab1, a first-in-class humanized inhibitory anti-asTF antibody we recently developed, can suppress PDAC primary tumor growth as a single agent. Whether hRabMab1 has the potential to suppress metastases in PDAC is unknown. Following in vivo screening of three asTF-proficient human PDAC cell lines, we chose to make use of KRAS G12V-mutant human PDAC cell line PaCa-44, which yields aggressive primary orthotopic tumors with spontaneous spread to PDAC-relevant anatomical sites, along with concomitant severe leukocytosis. The experimental design featured orthotopic tumors formed by luciferase labeled PaCa-44 cells; administration of hRabMab1 alone or in combination with gemcitabine/paclitaxel (gem/PTX); and the assessment of the treatment outcomes on the primary tumor tissue as well as systemic spread. When administered alone, hRabMab1 exhibited poor penetration of tumor tissue; however, hRabMab1 was abundant in tumor tissue when co-administered with gem/PTX, which resulted in a significant decrease in tumor cell proliferation; leukocyte infiltration; and neovascularization. Gem/PTX alone reduced primary tumor volume, but not metastatic spread; only the combination of hRabMab1 and gem/PTX significantly reduced metastatic spread. RNA-seq analysis of primary tumors showed that the addition of hRabMab1 to gem/PTX enhanced the downregulation of tubulin binding and microtubule motor activity. In the liver, hRabMab1 reduced liver metastasis as a single agent. Only the combination of hRabMab1 and gem/PTX eliminated tumor cell-induced leukocytosis. We here demonstrate for the first time that hRabMab1 may help suppress metastasis in PDAC. hRabMab1's ability to improve the efficacy of chemotherapy is significant and warrants further investigation.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Tromboplastina , Gencitabina , Anticorpos Monoclonais Humanizados/uso terapêutico , Leucocitose/tratamento farmacológico , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Desoxicitidina/farmacologia , Paclitaxel/uso terapêutico
4.
Mol Med Rep ; 29(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38488034

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent and aggressive form of pancreatic cancer. Gemcitabine (GEM), the first­line treatment for PDAC, which alleviates symptoms and enhances the quality of life of patients. However, it is prone to lead to the development of drug resistance during treatment. Interferon (IFN)­Î³ exhibits antitumor and immunomodulatory properties. The present study aimed to explore the impact of IFN­Î³ on the viability, migration and apoptosis of GEM­resistant pancreatic cancer cells. Firstly, a GEM­resistant pancreatic cancer cell line, named PANC­1/GEM, was constructed. Hematoxylin and eosin staining analyzed the cell morphology, whereas reverse transcription­quantitative PCR (RT­qPCR) assessed the expression levels of the drug­resistance genes multidrug resistance­associated protein (MRP) and breast cancer resistance protein (BCRP). The MTT assay and cell counting techniques were used to determine the appropriate concentration of IFN­y and its effects on cell viability. The IFN­Î³­induced apoptosis of PANC­1/GEM cells was assessed using an Apoptosis Detection Kit, whereas the impact of IFN­Î³ on the migration of these cells was evaluated using a wound­healing assay. The MTT assay revealed a resistance index of 22.4 in the PANC­1/GEM cell line. RT­qPCR indicated that, compared with in wild­type cells, the PANC­1/GEM resistant strain exhibited lower MRP and higher BCRP mRNA expression levels. The optimal concentration of IFN­Î³ for affecting PANC­1/GEM cells was determined to be 0.3 µg/ml. At this concentration, IFN­Î³ induced PANC­1/GEM cell apoptosis, along with a notable reduction in migration. Following treatment of PANC­1/GEM cells with IFN­Î³, MRP expression increased whereas BCRP mRNA expression decreased, indicating a reversal in their drug­resistance gene expression. In conclusion, IFN­Î³ exhibited antitumor immune properties by upregulating MRP and downregulating BCRP expression, reversing drug­resistance gene expression, and reducing cell viability and migration, while promoting apoptosis in PANC­1/GEM cells. IFN­Î³ could potentially serve as a treatment option for patients with GEM­resistant pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Desoxicitidina/farmacologia , Qualidade de Vida , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Apoptose , RNA Mensageiro
5.
Nanotechnology ; 35(25)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38452386

RESUMO

Pancreatic cancer's high fatality rates stem from its resistance to systemic drug delivery and aggressive metastasis, limiting the efficacy of conventional treatments. In this study, two-dimensional ultrathin silicene nanosheets were initially synthesized and near-infrared-responsive two-dimensional silicene-mesoporous silica nanoparticles (SMSNs) were successfully constructed to load the clinically-approved conventional pancreatic cancer chemotherapeutic drug gemcitabine. Experiments on nanoparticle characterization show that they have excellent photothermal conversion ability and stability. Then silicene-mesoporous silica nanoparticles loaded with gemcitabine nanoparticles (SMSN@G NPs) were employed in localized photothermal therapy to control pancreatic tumor growth and achieve therapeutic effects. Our research confirmed the functionality of SMSN@G NPs through immunoblotting and apoptotic assays, demonstrating its capacity to enhance the nuclear translocation of the NF-κB p65, further affect the protein levels of apoptosis-related genes, induce the apoptosis of tumor cells, and ultimately inhibit the growth of the tumor. Additionally, the study assessed the inhibitory role of SMSN@G NPs on pancreatic neoplasm growthin vivo, revealing its excellent biocompatibility. SMSN@G NPs have a nice application prospect for anti-pancreatic tumors.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Humanos , Gencitabina , NF-kappa B/metabolismo , NF-kappa B/farmacologia , NF-kappa B/uso terapêutico , Desoxicitidina/farmacologia , Dióxido de Silício/farmacologia , Linhagem Celular Tumoral , Apoptose , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo
6.
J Pharm Sci ; 113(1): 214-227, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38498417

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is often chemotherapy-resistant, and novel drug combinations would fill an unmet clinical need. Previously we reported synergistic cytotoxic effects of gemcitabine and trabectedin on pancreatic cancer cells, but underlying protein-level interaction mechanisms remained unclear. We employed a reliable, sensitive, comprehensive, quantitative, high-throughput IonStar proteomic workflow to investigate the time course of gemcitabine and trabectedin effects, alone and combined, upon pancreatic cancer cells. MiaPaCa-2 cells were incubated with vehicle (controls), gemcitabine, trabectedin, and their combinations over 72 hours. Samples were collected at intervals and analyzed using the label-free IonStar liquid chromatography-mass spectrometry (LC-MS/MS) workflow to provide temporal quantification of protein expression for 4,829 proteins in four experimental groups. To characterize diverse signal transduction pathways, a comprehensive systems pharmacodynamic (SPD) model was developed. The analysis is presented in two parts. Here, Part I describes drug responses in cancer cell growth and migration pathways included in the full model: receptor tyrosine kinase- (RTK), integrin-, G-protein coupled receptor- (GPCR), and calcium-signaling pathways. The developed model revealed multiple underlying mechanisms of drug actions, provides insight into the basis of drug interaction synergism, and offers a scientific rationale for potential drug combination strategies.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Humanos , Trabectedina/farmacologia , Desoxicitidina/farmacologia , Proteômica , Cromatografia Líquida , Linhagem Celular Tumoral , Espectrometria de Massas em Tandem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais
7.
Nutrients ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474833

RESUMO

We previously established pancreatic cancer (PaCa) cell lines resistant to gemcitabine and found that the activity of nuclear factor κB (NF-κB) was enhanced upon the acquisition of gemcitabine resistance. Parthenolide, the main active ingredient in feverfew, has been reported to exhibit antitumor activity by suppressing the NF-κB signaling pathway in several types of cancers. However, the antitumor effect of parthenolide on gemcitabine-resistant PaCa has not been elucidated. Here, we confirmed that parthenolide significantly inhibits the proliferation of both gemcitabine-resistant and normal PaCa cells at concentrations of 10 µM and higher, and that the NF-κB activity is significantly inhibited, even by 1 µM parthenolide. In Matrigel invasion assays and angiogenesis assays, the invasive and angiogenic potentials were higher in gemcitabine-resistant than normal PaCa cells and were inhibited by a low concentration of parthenolide. Furthermore, Western blotting showed suppressed MRP1 expression in gemcitabine-resistant PaCa treated with a low parthenolide concentration. In a colony formation assay, the addition of 1 µM parthenolide improved the sensitivity of gemcitabine-resistant PaCa cell lines to gemcitabine. These results suggest that parthenolide may be used as a novel therapeutic agent for the treatment of gemcitabine-resistant PaCa.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Sesquiterpenos , Humanos , NF-kappa B/metabolismo , Desoxicitidina/farmacologia , 60489 , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Neoplasias Pancreáticas/tratamento farmacológico
8.
Cancer Lett ; 589: 216810, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494151

RESUMO

Pancreatic cancer is characterized by desmoplasia; crosstalk between pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs) leads to the deposition of extracellular matrix proteins in the tumor environment resulting in poor vascularity. Targeting either PCCs or PSCs individually has produced mixed results, and there is currently no effective strategy to target both cell types simultaneously. Previously, we demonstrated, through in vitro cell culture experiments, that a specific gold nanoparticle-based nanoformulation containing the anti-EGFR antibody cetuximab (C225) as a targeting agent and gemcitabine as a chemotherapeutic agent effectively targets both PCCs and PSCs simultaneously. Herein, we extend our studies to test the ability of these in vitro tested nano formulations to inhibit tumor growth in an orthotopic co-implantation model of pancreatic cancer in vivo. Orthotopic tumors were established by co-implantation of equal numbers of PCCs and PSCs in the mouse pancreas. Among the various formulations tested, 5 nm gold nanoparticles coated with gemcitabine, cetuximab and poly-ethylene glycol (PEG) of molecular weight 1000 Da, which we named ACGP441000, demonstrated optimal efficacy in inhibiting tumor growth. The current study reveals an opportunity to target PCCs and PSCs simultaneously, by exploiting their overexpression of EGFR as a target, in order to inhibit pancreatic cancer growth.


Assuntos
Nanopartículas Metálicas , Neoplasias Pancreáticas , Animais , Camundongos , Gencitabina , Ouro , Cetuximab/farmacologia , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Distribuição Tecidual , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Sistemas de Liberação de Medicamentos/métodos , Células Estreladas do Pâncreas/metabolismo
9.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396679

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most frequent infiltrating type of pancreatic cancer. The poor prognosis associated with this cancer is due to the absence of specific biomarkers, aggressiveness, and treatment resistance. PDAC is a deadly malignancy bearing distinct genetic alterations, the most common being those that result in cancer-causing versions of the KRAS gene. Cannabigerol (CBG) is a non-psychomimetic cannabinoid with anti-inflammatory properties. Regarding the anticancer effect of CBG, up to now, there is only limited evidence in human cancers. To fill this gap, we investigated the effects of CBG on the PDAC cell lines, PANC-1 and MIAPaCa-2. The effect of CBG activity on cell viability, cell death, and EGFR-RAS-associated signaling was investigated. Moreover, the potential synergistic effect of CBG in combination with gemcitabine (GEM) and paclitaxel (PTX) was investigated. MTT was applied to investigate the effect of CBG on PDAC cell line viabilities. Annexin-V and Acridine orange staining, followed by cytofluorimetric analysis and Western blotting, were used to evaluate CBG's effect on cell death. The modulation of EGFR-RAS-associated pathways was determined by Western blot analysis and a Milliplex multiplex assay. Moreover, by employing the MTT data and SynergyFinder Plus software analysis, the effect of the combination of CBG and chemotherapeutic drugs was determined.


Assuntos
Morte Celular Autofágica , Canabinoides , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Apoptose , Morte Celular Autofágica/efeitos dos fármacos , Canabinoides/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores
10.
BMC Cancer ; 24(1): 268, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408959

RESUMO

BACKGROUND: Gemcitabine is a cornerstone drug for the treatment of all stages of pancreatic cancer and can prolong the survival of patients with pancreatic cancer, but resistance to gemcitabine in pancreatic cancer patients hinders its efficacy. The overexpression of Early growth response 1(EGR1) in pancreatic ductal adenocarcinoma as a mechanism of gemcitabine chemoresistance in pancreatic cancer has not been explored. The major mechanisms of gemcitabine chemoresistance are related to drug uptake, metabolism, and action. One of the common causes of tumor multidrug resistance (MDR) to chemotherapy in cancer cells is that transporter proteins increase intracellular drug efflux and decrease drug concentrations by inducing anti-apoptotic mechanisms. It has been reported that gemcitabine binds to MDR1 with high affinity. The purpose of this research was to investigate the potential mechanisms by which EGR1 associates with MDR1 to regulate gemcitabine resistance in pancreatic cancer cells. METHODS: The following in vitro and in vivo techniques were used in this research to explore the potential mechanisms by which EGR1 binds to MDR1 to regulate gemcitabine resistance in pancreatic cancer cells. Cell culture; in vitro and in vivo study of EGR1 function by loss of function analysis. Binding of EGR1 to the MDR1 promoter was detected using the ChIP assay. qRT-PCR, Western blot assays to detect protein and mRNA expression; use of Annexin V apoptosis detection assay to test apoptosis; CCK8, Edu assay to test cell proliferation viability. The animal model of pancreatic cancer subcutaneous allograft was constructed and the tumours were stained with hematoxylin eosin and Ki-67 expression was detected using immunohistochemistry. FINDINGS: We revealed that EGR1 expression was increased in different pancreatic cancer cell lines compared to normal pancreatic ductal epithelial cells. Moreover, gemcitabine treatment induced upregulation of EGR1 expression in a dose- and time-dependent manner. EGR1 is significantly enriched in the MDR1 promoter sequence.Upon knockdown of EGR1, cell proliferation was impaired in CFPAC-1 and PANC-1 cell lines, apoptosis was enhanced and MDR1 expression was decreased, thereby partially reversing gemcitabine chemoresistance. In animal experiments, knockdown of EGR1 enhanced the inhibitory effect of gemcitabine on tumor growth compared with the sh-NC group. CONCLUSIONS: Our study suggests that EGR1 may be involved in the regulation of MDR1 to enhance gemcitabine resistance in pancreatic cancer cells. EGR1 could be a novel therapeutic target to overcome gemcitabine resistance in pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Gencitabina , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Apoptose , Proteína 1 de Resposta de Crescimento Precoce/genética
11.
Target Oncol ; 19(2): 223-235, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38345693

RESUMO

BACKGROUND: The results reported in the TOPAZ-1 phase III trial led to the approval of the combination of cisplatin and gemcitabine with durvalumab as the new first-line standard of care for patients with locally advanced or metastatic cholangiocarcinoma. OBJECTIVE: We performed a clustering analysis to classify patients into different groups based on their mutation profile, correlating the results of the analysis with clinical outcomes. METHODS: We selected 51 patients with cholangiocarcinoma who were treated with the combination of chemotherapy and durvalumab and who were screened using the next-generation sequencing-based FoundationOne gene panel. We conducted mutation-based clustering of tumors and a survival analysis. RESULTS: Three main clusters were identified. Cluster 1 is mostly characterized by mutations in genes belonging to the chromatin modification pathway, altered in 100% of patients. Cluster 2 is characterized by the alteration of several pathways, among which DNA damage control, chromatin modification, RTK/RAS, cell-cycle apoptosis, TP53, and PI3K were the most affected. Finally, most altered pathways in cluster 3 were RTK/RAS and cell-cycle apoptosis. Overall response rate was 4/13 (31%), 12/24 (50%), and 0/10 (0%) in cluster 1, cluster 2, and cluster 3, respectively, and the difference between the three clusters was statistically significant (p = 0.0188). CONCLUSIONS: By grouping patients into three clusters with distinct molecular and genomic alterations, our analysis showed that patients included in cluster 2 had higher overall response rates, whereas patients included in cluster 3 had no objective response. Further investigations on larger and external cohorts are needed in order to validate our results.


Assuntos
Anticorpos Monoclonais , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Gencitabina , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Ductos Biliares Intra-Hepáticos/patologia , Genômica , Cromatina , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
12.
Adv Sci (Weinh) ; 11(16): e2306174, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368261

RESUMO

Patients with concurrent intrahepatic cholangiocarcinoma (ICC) and hepatolithiasis generally have poor prognoses. Hepatolithiasis is once considered the primary cause of ICC, although recent insights indicate that bacteria in the occurrence of hepatolithiasis can promote the progression of ICC. By constructing in vitro and in vivo ICC models and patient-derived organoids (PDOs), it is shown that Escherichia coli induces the production of a novel RNA, circGLIS3 (cGLIS3), which promotes tumor growth. cGLIS3 binds to hnRNPA1 and G3BP1, resulting in the assembly of stress granules (SGs) and suppression of hnRNPA1 and G3BP1 ubiquitination. Consequently, the IKKα mRNA is blocked in SGs, decreasing the production of IKKα and activating the NF-κB pathway, which finally results in chemoresistance and produces metastatic phenotypes of ICC. This study shows that a combination of Icaritin (ICA) and gemcitabine plus cisplatin (GP) chemotherapy can be a promising treatment strategy for ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , DNA Helicases , Progressão da Doença , Escherichia coli , NF-kappa B , RNA Helicases , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Humanos , NF-kappa B/metabolismo , NF-kappa B/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Animais , Camundongos , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética , Transdução de Sinais/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Gencitabina , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética
13.
Adv Sci (Weinh) ; 11(16): e2308637, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417121

RESUMO

One major obstacle in the drug treatment of pancreatic ductal adenocarcinoma (PDAC) is its highly fibrotic tumor microenvironment, which is replete with activated pancreatic stellate cells (a-PSCs). These a-PSCs generate abundant extracellular matrix and secrete various cytokines to form biophysical and biochemical barriers, impeding drug access to tumor tissues. Therefore, it is imperative to develop a strategy for reversing PSC activation and thereby removing the barriers to facilitate PDAC drug treatment. Herein, by integrating chromatin immunoprecipitation (ChIP)-seq, Assays for Transposase-Accessible Chromatin (ATAC)-seq, and RNA-seq techniques, this work reveals that super-enhancers (SEs) promote the expression of various genes involved in PSC activation. Disruption of SE-associated transcription with JQ1 reverses the activated phenotype of a-PSCs and decreases stromal fibrosis in both orthotopic and patient-derived xenograft (PDX) models. More importantly, disruption of SEs by JQ1 treatments promotes vascularization, facilitates drug delivery, and alters the immune landscape in PDAC, thereby improving the efficacies of both chemotherapy (with gemcitabine) and immunotherapy (with IL-12). In summary, this study not only elucidates the contribution of SEs of a-PSCs in shaping the PDAC tumor microenvironment but also highlights that targeting SEs in a-PSCs may become a gate-opening strategy that benefits PDAC drug therapy by removing stromal barriers.


Assuntos
Carcinoma Ductal Pancreático , Imunoterapia , Neoplasias Pancreáticas , Células Estreladas do Pâncreas , Microambiente Tumoral , Células Estreladas do Pâncreas/efeitos dos fármacos , Células Estreladas do Pâncreas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Humanos , Animais , Camundongos , Imunoterapia/métodos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Modelos Animais de Doenças , Gencitabina , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Azepinas/farmacologia , Azepinas/uso terapêutico , Linhagem Celular Tumoral , Triazóis/farmacologia , Triazóis/uso terapêutico
14.
Drug Resist Updat ; 73: 101064, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387284

RESUMO

AIMS: Pancreatic ductal adenocarcinoma (PDAC) is often intrinsically-resistant to standard-of-care chemotherapies such as gemcitabine. Acquired gemcitabine resistance (GemR) can arise from treatment of initially-sensitive tumors, and chemotherapy can increase tumor aggressiveness. We investigated the molecular mechanisms of chemoresistance and chemotherapy-driven tumor aggressiveness, which are understood incompletely. METHODS: Differential proteomic analysis was employed to investigate chemotherapy-driven chemoresistance drivers and responses of PDAC cells and patient-derived tumor xenografts (PDX) having different chemosensitivities. We also investigated the prognostic value of FGFR1 expression in the efficacy of selective pan-FGFR inhibitor (FGFRi)-gemcitabine combinations. RESULTS: Quantitative proteomic analysis of a highly-GemR cell line revealed fibroblast growth factor receptor 1 (FGFR1) as the highest-expressed receptor tyrosine kinase. FGFR1 knockdown or FGFRi co-treatment enhanced gemcitabine efficacy and decreased GemR marker expression, implicating FGFR1 in augmentation of GemR. FGFRi treatment reduced PDX tumor progression and prolonged survival significantly, even in highly-resistant tumors in which neither single-agent showed efficacy. Gemcitabine exacerbated aggressiveness of highly-GemR tumors, based upon proliferation and metastatic markers. Combining FGFRi with gemcitabine or gemcitabine+nab-paclitaxel reversed tumor aggressiveness and progression, and prolonged survival significantly. In multiple PDAC PDXs, FGFR1 expression correlated with intrinsic tumor gemcitabine sensitivity. CONCLUSION: FGFR1 drives chemoresistance and tumor aggressiveness, which FGFRi can reverse.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Proliferação de Células , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Gencitabina , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteômica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/uso terapêutico
15.
Cell Death Dis ; 15(2): 131, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346958

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is considered one of the most lethal forms of cancer. Although in the last decade, an increase in 5-year patient survival has been observed, the mortality rate remains high. As a first-line treatment for PDAC, gemcitabine alone or in combination (gemcitabine plus paclitaxel) has been used; however, drug resistance to this regimen is a growing issue. In our previous study, we reported MYC/glutamine dependency as a therapeutic target in gemcitabine-resistant PDAC secondary to deoxycytidine kinase (DCK) inactivation. Moreover, enrichment of oxidative phosphorylation (OXPHOS)-associated genes was a common property shared by PDAC cell lines, and patient clinical samples coupled with low DCK expression was also demonstrated, which implicates DCK in cancer metabolism. In this article, we reveal that the expression of most genes encoding mitochondrial complexes is remarkably upregulated in PDAC patients with low DCK expression. The DCK-knockout (DCK KO) CFPAC-1 PDAC cell line model reiterated this observation. Particularly, OXPHOS was functionally enhanced in DCK KO cells as shown by a higher oxygen consumption rate and mitochondrial ATP production. Electron microscopic observations revealed abnormal mitochondrial morphology in DCK KO cells. Furthermore, DCK inactivation exhibited reactive oxygen species (ROS) reduction accompanied with ROS-scavenging gene activation, such as SOD1 and SOD2. SOD2 inhibition in DCK KO cells clearly induced cell growth suppression. In combination with increased anti-apoptotic gene BCL2 expression in DCK KO cells, we finally reveal that venetoclax and a mitochondrial complex I inhibitor are therapeutically efficacious for DCK-inactivated CFPAC-1 cells in in vitro and xenograft models. Hence, our work provides insight into inhibition of mitochondrial metabolism as a novel therapeutic approach to overcome DCK inactivation-mediated gemcitabine resistance in PDAC patient treatment.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Desoxicitidina Quinase/antagonistas & inibidores , Desoxicitidina Quinase/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Gencitabina/farmacologia , Gencitabina/uso terapêutico , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Int J Biol Sci ; 20(4): 1180-1193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385083

RESUMO

Chemoresistance is an obstacle of improving pancreatic cancer (PC) prognosis. However, the biological function of ISG15 in PC and whether it correlates with the resistance to chemotherapy are still unknown. Here, we aimed to reveal the clinical significance of ISG15 in PC and its regulatory mechanism in cancer progression and resistance to therapy. The level of ISG15, a protein involved in post-translational modifications, is elevated in PC tissues. Clinically, higher ISG15 expression correlates with higher PC grades, stronger resistance to treatment and poorer prognosis. Moreover, ISG15 promotes the proliferation, migration, invasion, colony formation of PC cells and resistance to Gemcitabine, a classic chemotherapeutics for PC, both in vitro and in vivo. ISG15 promotes progression and resistance to therapy in PC cells by binding to ATG7, reducing its degradation, and thereby leading to enhanced autophagy in PC cells. ISG15 may be used as both a potential diagnosis marker and sensitizer for chemotherapeutics such as Gemcitabine during PC intervention.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Humanos , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Citocinas/genética , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ubiquitinas/genética , Ubiquitinas/farmacologia , Ubiquitinas/uso terapêutico
17.
Cancer Lett ; 585: 216640, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38290659

RESUMO

Gemcitabine, a pivotal chemotherapeutic agent for pancreatic ductal adenocarcinoma (PDAC), frequently encounters drug resistance, posing a significant clinical challenge with implications for PDAC patient prognosis. In this study, employing an integrated approach involving bioinformatic analyses from multiple databases, we unveil CSNK2A1 as a key regulatory factor. The patient-derived xenograft (PDX) model further substantiates the critical role of CSNK2A1 in gemcitabine resistance within the context of PDAC. Additionally, targeted silencing of CSNK2A1 expression significantly enhances sensitivity of PDAC cells to gemcitabine treatment. Mechanistically, CSNK2A1's transcriptional regulation is mediated by H3K27 acetylation in PDAC. Moreover, we identify CSNK2A1 as a pivotal activator of autophagy, and enhanced autophagy drives gemcitabine resistance. Silmitasertib, an established CSNK2A1 inhibitor, can effectively inhibit autophagy. Notably, the combinatorial treatment of Silmitasertib with gemcitabine demonstrates remarkable efficacy in treating PDAC. In summary, our study reveals CSNK2A1 as a potent predictive factor for gemcitabine resistance in PDAC. Moreover, targeted CSNK2A1 inhibition by Silmitasertib represents a promising therapeutic strategy to restore gemcitabine sensitivity in PDAC, offering hope for improved clinical outcomes.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Autofagia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética
18.
Lab Chip ; 24(4): 854-868, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38240720

RESUMO

The pancreatic ductal adenocarcinoma (PDAC) stroma and its inherent biophysical barriers to drug delivery are central to therapeutic resistance. This makes PDAC the most prevalent pancreatic cancer with poor prognosis. The chemotherapeutic drug gemcitabine is used against various solid tumours, including pancreatic cancer, but with only a modest effect on patient survival. The growing PDAC tumour mass with high densities of cells and extracellular matrix (ECM) proteins, i.e., collagen, results in high interstitial pressure, leading to vasculature collapse and a dense, hypoxic, mechanically stiff stroma with reduced interstitial flow, critical to drug delivery to cells. Despite this, most drug studies are performed on cellular models that neglect these biophysical barriers to drug delivery. Microfluidic technology offers a promising platform to emulate tumour biophysical characteristics with appropriate flow conditions and transport dynamics. We present a microfluidic PDAC culture model, encompassing the disease's biophysical barriers to therapeutics, to evaluate the use of the angiotensin II receptor blocker losartan, which has been found to have matrix-depleting properties, on improving gemcitabine efficacy. PDAC cells were seeded into our 5-channel microfluidic device for a 21-day culture to mimic the rigid, collagenous PDAC stroma with reduced interstitial flow, which is critical to drug delivery to the cancer cells, and for assessment with gemcitabine and losartan treatment. With losartan, our culture matrix was more porous with less collagen, resulting in increased hydraulic conductivity of the culture interstitial space and improved gemcitabine effect. We demonstrate the importance of modelling tumour biophysical barriers to successfully assess new drugs and delivery methods.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Losartan/uso terapêutico , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Colágeno/metabolismo , Linhagem Celular Tumoral
19.
J Exp Clin Cancer Res ; 43(1): 4, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163893

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest types of cancer and the chemotherapies such as gemcitabine/nab-paclitaxel are confronted with intrinsic or acquired resistance. The aim of this study was to investigate mechanisms underlying paclitaxel resistance in PDAC and explore strategies to overcome it. METHODS: Three paclitaxel (PR) and gemcitabine resistant (GR) PDAC models were established. Transcriptomics and proteomics were used to identify conserved mechanisms of drug resistance. Genetic and pharmacological approaches were used to overcome paclitaxel resistance. RESULTS: Upregulation of ABCB1 through locus amplification was identified as a conserved feature unique to PR cells. ABCB1 was not affected in any of the GR models and no cross resistance was observed. The ABCB1 inhibitor verapamil or siRNA-mediated ABCB1 depletion sensitized PR cells to paclitaxel and prevented efflux of ABCB1 substrates in all models. ABCB1 expression was associated with a trend towards shorter survival in patients who had received gemcitabine/nab-paclitaxel treatment. A pharmacological screen identified known and novel kinase inhibitors that attenuate efflux of ABCB1 substrates and sensitize PR PDAC cells to paclitaxel. CONCLUSION: Upregulation of ABCB1 through locus amplification represents a novel, conserved mechanism of PDAC paclitaxel resistance. Kinase inhibitors identified in this study can be further (pre) clinically explored as therapeutic strategies to overcome paclitaxel resistance in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Gencitabina , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
20.
J Colloid Interface Sci ; 659: 339-354, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38176243

RESUMO

Nanotechnology's potential in revolutionising cancer treatments is evident in targeted drug delivery systems (DDSs) engineered to optimise therapeutic efficacy and minimise toxicity. This study examines a novel nanocarrier constructed with carbon nano-onions (CNOs), engineered and evaluated for its ability to selectively target cancer cells overexpressing the hyaluronic acid receptor; CD44. Our results highlighted that the CNO-based nanocarrier coupled with hyaluronic acid as the targeting agent demonstrated effective uptake by CD44+ PANC-1 and MIA PaCa-2 cells, while avoiding CD44- Capan-1 cells. The CNO-based nanocarrier also exhibited excellent biocompatibility in all tested pancreatic ductal adenocarcinoma (PDAC) cells, as well as healthy cells. Notably, the CNO-based nanocarrier was successfully loaded with chemotherapeutic 4-(N)-acyl- sidechain-containing prodrugs derived from gemcitabine (GEM). These prodrugs alone exhibited remarkable efficacy in killing PDAC cells which are known to be GEM resistant, and their efficacy was amplified when combined with the CNO-based nanocarrier, particularly in targeting GEM-resistant CD44+ PDAC cells. These findings demonstrate the potential of CNOs as promising scaffolds in advancing targeted DDSs, signifying the translational potential of carbon nanoparticles for cancer therapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pró-Fármacos , Humanos , Gencitabina , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Cebolas , Ácido Hialurônico , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...